Polarization in Dynamic Networks: A Hopfield Model of Emergent Structure

نویسندگان

  • Michael W. Macy
  • James A. Kitts
  • Steve Benard
چکیده

Why do populations often self-organize into antagonistic groups even in the absence of competition over scarce resources? Is there a tendency to demarcate groups of “us” and “them” that is inscribed in our cognitive architecture? We look for answers by exploring the dynamics of influence and attraction between computational agents. Our model is an extension of Hopfield’s attractor network. Agents are attracted to others with similar states (the principle of homophily) and are also influenced by others, as conditioned by the strength and valence of the social tie. Negative valence implies xenophobia (instead of homophily) and differentiation (instead of imitation). Consistent with earlier work on structural balance, we find that networks can selforganize into two antagonistic factions, without the knowledge or intent of the agents. We model this tendency as a function of network size, the number of potentially contentious issues, and agents' openness and flexibility toward alternative positions. Although we find that polarization into two antagonistic groups is a unique global attractor, we investigate the conditions under which uniform and pluralistic alignments may also be equilibria. From a random start, agents can self-organize into pluralistic arrangements if the population size is large relative to the size of the state space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm Using Hopfield Neural Network with CHN for N-Queens Problem

A model of neurons with CHN (Continuous Hysteresis Neurons) for the Hopfield neural networks is studied. We prove theoretically that the emergent collective properties of the original Hopfield neural networks also are present in the Hopfield neural networks with continuous hysteresis neurons. The network architecture is applied to the N-Queens problem and results of computer simulations are pre...

متن کامل

Estimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization

In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...

متن کامل

Culture Wars and Dynamic Networks: A Hopfield Model of Emergent Structure

Why do populations often self-organize into antagonistic groups even in the absence of competition over scarce resources? Is there a tendency to demarcate groups of “us” and “them” that is inscribed in our cognitive architecture? We look for answers by exploring the dynamics of influence and attraction between computational agents. Our model is an extension of Hopfield’s attractor network. Agen...

متن کامل

Hopfield Neural Network with Hysteresis for Maximum Cut Problem

A model of neurons with hysteresis (or hysteresis binary neurons) for the Hopfield neural networks is studied. We prove theoretically that the emergent collective properties of the original Hopfield neural networks also are present in the Hopfield neural networks with hysteresis binary neurons. As an example, the networks are also applied to the maximum cut problem and results of computer simul...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003